Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38477657

RESUMO

Acute respiratory distress syndrome (ARDS) is associated with long-term impairments in brain and muscle function that significantly impact the quality of life of those who survive the acute illness. The mechanisms underlying these impairments are not yet well understood, and evidence-based interventions to minimize the burden on patients remain unproven. The National Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health assembled a workshop in April 2023 to review the state of the science regarding ARDS-associated brain and muscle dysfunction, to identify gaps in current knowledge, and to determine priorities for future investigation. The workshop included presentations by scientific leaders across the translational science spectrum and was open to the public as well as the scientific community. This report describes the themes discussed at the workshop as well as recommendations to advance the field toward the goal of improving the health and wellbeing of ARDS survivors.

2.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38339124

RESUMO

Peripheral nerve injury denervates muscle, resulting in muscle paralysis and atrophy. This is reversible if timely muscle reinnervation occurs. With delayed reinnervation, the muscle's reparative ability declines, and muscle-resident fibro-adipogenic progenitor cells (FAPs) proliferate and differentiate, inducing fibro-fatty muscle degradation and thereby physical disability. The mechanisms by which the peripheral nerve regulates FAPs expansion and differentiation are incompletely understood. Using the rat tibial neve transection model, we demonstrated an increased FAPs content and a changing FAPs phenotype, with an increased capacity for adipocyte and fibroblast differentiation, in gastrocnemius muscle post-denervation. The FAPs response was inhibited by immediate tibial nerve repair with muscle reinnervation via neuromuscular junctions (NMJs) and sensory organs (e.g., muscle spindles) or the sensory protection of muscle (where a pure sensory nerve is sutured to the distal tibial nerve stump) with reinnervation by muscle spindles alone. We found that both procedures reduced denervation-mediated increases in glial-cell-line-derived neurotrophic factor (GDNF) in muscle and that GDNF promoted FAPs adipogenic and fibrogenic differentiation in vitro. These results suggest that the peripheral nerve controls FAPs recruitment and differentiation via the modulation of muscle GDNF expression through NMJs and muscle spindles. GDNF can serve as a therapeutic target in the management of denervation-induced muscle injury.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial , Músculo Esquelético , Ratos , Animais , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Músculo Esquelético/metabolismo , Diferenciação Celular , Nervo Tibial/lesões , Adipogenia , Denervação
3.
Front Physiol ; 14: 1336150, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089480
5.
Chron Respir Dis ; 19: 14799731221131330, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36380568

RESUMO

BACKGROUND: Cystic fibrosis (CF) is characterized by CF transmembrane conductance regulator (CFTR) dysfunction. CFTR protein is expressed in human skeletal muscle; however, its impact on skeletal muscle is unknown. The objectives of this study were to compare quadriceps muscle size and quality between adults with various severities of CFTR protein dysfunction. METHODS: We conducted a prospective, cross-sectional study comparing 34 adults with severe versus 18 with mild CFTR protein dysfunction, recruited from a specialized CF centre. Ultrasound images of rectus femoris cross-sectional area (RF-CSA) and quadriceps layer thickness for muscle size, and rectus femoris echogenicity (RF-ECHO) (muscle quality) were obtained. Multivariable linear regression models were developed using purposeful selection technique. RESULTS: People with severe CFTR protein dysfunction had larger RF-CSA by 3.22 cm2, 95% CI (1.03, 5.41) cm2, p=.0049], after adjusting for oral corticosteroid use and Pseudomonas aeruginosa colonization. However, a sensitivity analysis indicated that the result was influenced by the specific confounders being adjusted for in the model. We did not find any significant differences in quadriceps layer thickness or RF-ECHO between the two groups. CONCLUSION: We found no differential impact of the extent of diminished CFTR protein activity on quadriceps muscle size or quality in our study cohort. Based on these findings, CFTR mutation status cannot be used differentiate leg muscle size or quality in people with CF.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Adulto , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Músculo Quadríceps , Estudos Transversais , Estudos Prospectivos
6.
Sci Rep ; 12(1): 16116, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36167715

RESUMO

The Mycobacterium abscessus complex causes significant morbidity and mortality among patients with Cystic Fibrosis (CF). It has been hypothesized that these organisms are transmitted from patient to patient based on genomics. However, few studies incorporate epidemiologic data to confirm this hypothesis. We longitudinally sampled 27 CF and 7 non-CF patients attending a metropolitan hospital in Ontario, Canada from 2013 to 2018. Whole genome sequencing along with epidemiological data was used to evaluate the likelihood of transmission. Overall, the genetic diversity of M. abscessus was large, with a median pairwise distance (IQR) of 1,279 (143-134) SNVs between all Ontario M. abscessus isolates and 2,908 (21-3,204) single nucleotide variants (SNVs) between M. massiliense isolates. This reflects the global diversity of this pathogen, with Ontario isolates widely dispersed throughout global phylogenetic trees of each subspecies. Using a maximum distance of 25 SNVs as a threshold to identify possible transmission, we identified 23 (of 276 total) pairs of closely-related isolates. However, transmission was probable for only one pair based on both genomic and epidemiological data. This suggests that person-to-person transmission of M. abscessus among CF patients is indeed rare and reinforces the critical importance of epidemiological data for inferences of transmission.


Assuntos
Fibrose Cística , Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Fibrose Cística/epidemiologia , Fibrose Cística/microbiologia , Genômica , Humanos , Infecções por Mycobacterium não Tuberculosas/epidemiologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium abscessus/genética , Nucleotídeos , Ontário/epidemiologia , Filogenia
7.
J Cachexia Sarcopenia Muscle ; 13(2): 1262-1276, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35092190

RESUMO

BACKGROUND: Intensive care unit (ICU)-acquired weakness is characterized by muscle atrophy and impaired contractility that may persist after ICU discharge. Dysregulated muscle repair and regeneration gene co-expression networks are present in critical illness survivors with persistent muscle wasting and weakness. We aimed to identify microRNAs (miRs) regulating the gene networks and determine their role in the self-renewal of muscle in ICU survivors. METHODS: Muscle whole-transcriptome expression was assessed with microarrays in banked quadriceps biopsies obtained at 7 days and 6 months post-ICU discharge from critically ill patients (n = 15) in the RECOVER programme and healthy individuals (n = 8). We conducted an integrated miR-messenger RNA analysis to identify miR/gene pairs associated with muscle recovery post-critical illness and evaluated their impact on myoblast proliferation and differentiation in human AB1167 and murine C2C12 cell lines in vitro. Select target genes were validated with quantitative PCR. RESULTS: Twenty-two miRs were predicted to regulate the Day 7 post-ICU muscle transcriptome vs. controls. Thirty per cent of all differentially expressed genes shared a 3'UTR regulatory sequence for miR-424-3p/5p, which was 10-fold down-regulated in patients (P < 0.001) and correlated with quadriceps size (R = 0.86, P < 0.001), strength (R = 0.75, P = 0.007), and physical function (Functional Independence Measures motor subscore, R = 0.92, P < 0.001) suggesting its potential role as a master regulator of early recovery of muscle mass and strength following ICU discharge. Network analysis demonstrated enrichment for cellular respiration and muscle fate commitment/development related genes. At 6 months post-ICU discharge, a 14-miR expression signature, including miRs-490-3p and -744-5p, identified patients with muscle mass recovery vs. those with sustained atrophy. Constitutive overexpression of the novel miR-490-3p significantly inhibited AB1167 and C2C12 myoblast proliferation (cell count AB1167 miR-490-3p mimic or scrambled-miR transfected myoblasts 7926 ± 4060 vs. 14 159 ± 3515 respectively, P = 0.006; proportion Ki67-positive nuclei AB1167 miR-490-3p mimic or scrambled-miR transfected myoblasts 0.38 ± 0.07 vs. 0.54 ± 0.06 respectively, P < 0.001; proliferating cell nuclear antigen expression AB1167 miR-490-3p mimic or scrambled-miR transfected myoblasts 11.48 ± 1.97 vs. 16.75 ± 1.19 respectively, P = 0.040). Constitutive overexpression of miR-744-5p, a known regulator of myogenesis, significantly inhibited AB1167 and C2C12 myoblast differentiation (fusion index AB1167 miR-744-5p mimic or scrambled-miR transfected myoblasts 8.31 ± 7.00% vs. 40.29 ± 9.37% respectively, P < 0.001; myosin heavy chain expression miR-744-5p mimic or scrambled-miR transfected myoblasts 0.92 ± 0.39 vs. 13.53 ± 5.5 respectively, P = 0.01). CONCLUSIONS: Combined functional transcriptomics identified 36 miRs including miRs-424-3p/5p, -490-3p, and -744-5p as potential regulators of gene networks associated with recovery of muscle mass and strength following critical illness. MiR-490-3p is identified as a novel regulator of myogenesis.


Assuntos
MicroRNAs , Animais , Estado Terminal , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Músculos/metabolismo , Mioblastos/metabolismo , Sobreviventes
8.
J Infect Dis ; 225(8): 1317-1320, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-34919700

RESUMO

We assessed the COVID-19 pandemic's impact on treatment of latent tuberculosis, and of active tuberculosis, at 3 centers in Montreal and Toronto, using data from 10 833 patients (8685 with latent tuberculosis infection, 2148 with active tuberculosis). Observation periods prior to declarations of COVID-19 public health emergencies ranged from 219 to 744 weeks, and after declarations, from 28 to 33 weeks. In the latter period, reductions in latent tuberculosis infection treatment initiation rates ranged from 30% to 66%. At 2 centers, active tuberculosis treatment rates fell by 16% and 29%. In Canada, cornerstone measures for tuberculosis elimination weakened during the COVID-19 pandemic.


Assuntos
COVID-19 , Tuberculose Latente , Tuberculose , Canadá/epidemiologia , Humanos , Pandemias/prevenção & controle , SARS-CoV-2 , Tuberculose/tratamento farmacológico , Tuberculose/epidemiologia , Tuberculose/prevenção & controle
9.
J Vis Exp ; (172)2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34180887

RESUMO

Fibro-adipogenic Progenitors (FAPs) are resident interstitial cells in skeletal muscle that, together with myogenic progenitors (MPs), play a key role in muscle homeostasis, injury, and repair. Current protocols for FAPs identification and isolation use flow cytometry/fluorescence-activated cell sorting (FACS) and studies evaluating their function in vivo to date have been undertaken exclusively in mice. The larger inherent size of the rat allows for a more comprehensive analysis of FAPs in skeletal muscle injury models, especially in severely atrophic muscle or when investigators require substantial tissue mass to conduct multiple downstream assays. The rat additionally provides a larger selection of muscle functional assays that do not require animal sedation or sacrifice, thus minimizing morbidity and animal use by enabling serial assessments. The flow cytometry/FACS protocols optimized for mice are species specific, notably restricted by the characteristics of commercially available antibodies. They have not been optimized for separating FAPs from rat or highly fibrotic muscle. A flow cytometry/FACS protocol for the identification and isolation of FAPs and MPs from both healthy and denervated rat skeletal muscle was developed, relying on the differential expression of surface markers CD31, CD45, Sca-1, and VCAM-1. As rat-specific, flow cytometry-validated primary antibodies are severely limited, in-house conjugation of the antibody targeting Sca-1 was performed. Using this protocol, successful Sca-1 conjugation was confirmed, and flow cytometric identification of FAPs and MPs was validated by cell culture and immunostaining of FACS-isolated FAPs and MPs. Finally, we report a novel FAPs time-course in a prolonged (14 week) rat denervation model. This method provides the investigators the ability to study FAPs in a novel animal model.


Assuntos
Adipogenia , Desenvolvimento Muscular , Animais , Diferenciação Celular , Citometria de Fluxo , Camundongos , Músculo Esquelético , Ratos
10.
PLoS One ; 16(3): e0247872, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33657184

RESUMO

BACKGROUND: Tuberculosis (TB) is a major cause of death worldwide. TB research draws heavily on clinical cohorts which can be generated using electronic health records (EHR), but granular information extracted from unstructured EHR data is limited. The St. Michael's Hospital TB database (SMH-TB) was established to address gaps in EHR-derived TB clinical cohorts and provide researchers and clinicians with detailed, granular data related to TB management and treatment. METHODS: We collected and validated multiple layers of EHR data from the TB outpatient clinic at St. Michael's Hospital, Toronto, Ontario, Canada to generate the SMH-TB database. SMH-TB contains structured data directly from the EHR, and variables generated using natural language processing (NLP) by extracting relevant information from free-text within clinic, radiology, and other notes. NLP performance was assessed using recall, precision and F1 score averaged across variable labels. We present characteristics of the cohort population using binomial proportions and 95% confidence intervals (CI), with and without adjusting for NLP misclassification errors. RESULTS: SMH-TB currently contains retrospective patient data spanning 2011 to 2018, for a total of 3298 patients (N = 3237 with at least 1 associated dictation). Performance of TB diagnosis and medication NLP rulesets surpasses 93% in recall, precision and F1 metrics, indicating good generalizability. We estimated 20% (95% CI: 18.4-21.2%) were diagnosed with active TB and 46% (95% CI: 43.8-47.2%) were diagnosed with latent TB. After adjusting for potential misclassification, the proportion of patients diagnosed with active and latent TB was 18% (95% CI: 16.8-19.7%) and 40% (95% CI: 37.8-41.6%) respectively. CONCLUSION: SMH-TB is a unique database that includes a breadth of structured data derived from structured and unstructured EHR data by using NLP rulesets. The data are available for a variety of research applications, such as clinical epidemiology, quality improvement and mathematical modeling studies.


Assuntos
Registros Eletrônicos de Saúde , Processamento de Linguagem Natural , Tuberculose/epidemiologia , Bases de Dados Factuais , Feminino , Hospitais , Humanos , Armazenamento e Recuperação da Informação , Masculino , Ontário/epidemiologia , Estudos Retrospectivos , Tuberculose/diagnóstico
11.
J Transl Med ; 18(1): 454, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33256785

RESUMO

BACKGROUND: Myopathies are a heterogenous collection of disorders characterized by dysfunction of skeletal muscle. In practice, myopathies are frequently encountered by physicians and precise diagnosis remains a challenge in primary care. Molecular expression profiles show promise for disease diagnosis in various pathologies. We propose a novel machine learning-based clinical tool for predicting muscle disease subtypes using multi-cohort microarray expression data. MATERIALS AND METHODS: Muscle tissue samples originating from 1260 patients with muscle weakness. Data was curated from 42 independent cohorts with expression profiles in public microarray gene expression repositories, which represent a broad range of patient ages and peripheral muscles. Cohorts were categorized into five muscle disease subtypes: immobility, inflammatory myopathies, intensive care unit acquired weakness (ICUAW), congenital, and chronic systemic disease. The data contains expression data on 34,099 genes. Data augmentation techniques were used to address class imbalances in the muscle disease subtypes. Support vector machine (SVM) models were trained on two-thirds of the 1260 samples based on the top selected gene signature using analysis of variance (ANOVA). The model was validated in the remaining samples using area under the receiver operator curve (AUC). Gene enrichment analysis was used to identify enriched biological functions in the gene signature. RESULTS: The AUC ranges from 0.611 to 0.649 in the observed imbalanced data. Overall, using the augmented data, chronic systemic disease was the best predicted class with AUC 0.872 (95% confidence interval (CI): 0.824-0.920). The least discriminated classes were ICUAW with AUC 0.777 (95% CI: 0.668-0.887) and immobility with AUC 0.789 (95% CI: 0.716-0.861). Disease-specific gene set enrichment results showed that the gene signature was enriched in biological processes including neural precursor cell proliferation for ICUAW and aerobic respiration for congenital (false discovery rate q-value < 0.001). CONCLUSION: Our results present a well-performing molecular classification tool with the selected gene markers for muscle disease classification. In practice, this tool addresses an important gap in the literature on myopathies and presents a potentially useful clinical tool for muscle disease subtype diagnosis.


Assuntos
Aprendizado de Máquina , Doenças Musculares , Marcadores Genéticos , Humanos , Análise em Microsséries , Máquina de Vetores de Suporte
12.
Int J Mol Sci ; 21(21)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105809

RESUMO

Intensive care unit-acquired weakness (ICUAW) occurs in critically ill patients stemming from the critical illness itself, and results in sustained disability long after the ICU stay. Weakness can be attributed to muscle wasting, impaired contractility, neuropathy, and major pathways associated with muscle protein degradation such as the ubiquitin proteasome system and dysregulated autophagy. Furthermore, it is characterized by the preferential loss of myosin, a distinct feature of the condition. While many risk factors for ICUAW have been identified, effective interventions to offset these changes remain elusive. In addition, our understanding of the mechanisms underlying the long-term, sustained weakness observed in a subset of patients after discharge is minimal. Herein, we discuss the various proposed pathways involved in the pathophysiology of ICUAW, with a focus on the mechanisms underpinning skeletal muscle wasting and impaired contractility, and the animal models used to study them. Furthermore, we will explore the contributions of inflammation, steroid use, and paralysis to the development of ICUAW and how it pertains to those with the corona virus disease of 2019 (COVID-19). We then elaborate on interventions tested as a means to offset these decrements in muscle function that occur as a result of critical illness, and we propose new strategies to explore the molecular mechanisms of ICUAW, including serum-related biomarkers and 3D human skeletal muscle culture models.


Assuntos
Infecções por Coronavirus/complicações , Cuidados Críticos , Debilidade Muscular/etiologia , Atrofia Muscular/etiologia , Pneumonia Viral/complicações , Animais , COVID-19 , Infecções por Coronavirus/terapia , Humanos , Doença Iatrogênica , Debilidade Muscular/fisiopatologia , Debilidade Muscular/prevenção & controle , Atrofia Muscular/fisiopatologia , Atrofia Muscular/prevenção & controle , Pandemias , Pneumonia Viral/terapia
13.
Chest ; 158(6): 2270-2274, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32693101
14.
Crit Care Med ; 48(2): 142-150, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31939781

RESUMO

OBJECTIVES: Epigenetic alterations are an important regulator of gene expression in health and disease; however, epigenetic data in sepsis are lacking. To demonstrate proof of concept and estimate effect size, we performed the first epigenome-wide methylation analysis of whole blood DNA samples from a cohort of septic and nonseptic critically ill patients. DESIGN: A nested case-control study using genomic DNA isolated from whole blood from septic (n = 66) and nonseptic (n = 68) critically ill patients on "Day 1" of ICU admission. Methylation patterns were identified using Illumina 450K arrays with percent methylation expressed as ß values. After quality control, 134 participants and 414,818 autosomal cytosine-phosphate-guanine sites were used for epigenome-wide methylation analyses. SETTING: Tertiary care hospitals. SUBJECTS: Critically ill septic and nonseptic patients. INTERVENTIONS: Observational study. MEASUREMENTS AND MAIN RESULTS: A total of 668 differentially methylated regions corresponding to 443 genes were identified. Known sepsis-associated genes included complement component 3; angiopoietin 2; myeloperoxidase; lactoperoxidase; major histocompatibility complex, class I, A; major histocompatibility complex, class II, isotype DR ß I; major histocompatibility complex, class I, C; and major histocompatibility complex, class II, isotype DQ ß I. When compared with whole blood gene expression data from seven external datasets containing septic and nonseptic patients, 81% of the differentially methylated region-associated genes were differentially expressed in one or more datasets and 31% in three or more datasets. Functional analysis showed enrichment for antigen processing and presentation, methyltransferase activity, cell adhesion, and cell junctions. Analysis by weighted gene coexpression network analysis revealed DNA comethylation modules that were associated with clinical traits including severity of illness, need for vasopressors, and length of stay. CONCLUSIONS: DNA methylation marks may provide important causal and potentially biomarker information in critically ill patients with sepsis.


Assuntos
Estado Terminal , Metilação de DNA/genética , Epigênese Genética/genética , Sepse/genética , Biomarcadores , Estudos de Casos e Controles , Cromossomos Humanos Par 6/genética , Feminino , Humanos , Unidades de Terapia Intensiva , Interferons/metabolismo , Masculino , Escores de Disfunção Orgânica , Projetos Piloto , Centros de Atenção Terciária
15.
JMIR Med Inform ; 7(4): e12575, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31682579

RESUMO

BACKGROUND: The increasing adoption of electronic health records (EHRs) in clinical practice holds the promise of improving care and advancing research by serving as a rich source of data, but most EHRs allow clinicians to enter data in a text format without much structure. Natural language processing (NLP) may reduce reliance on manual abstraction of these text data by extracting clinical features directly from unstructured clinical digital text data and converting them into structured data. OBJECTIVE: This study aimed to assess the performance of a commercially available NLP tool for extracting clinical features from free-text consult notes. METHODS: We conducted a pilot, retrospective, cross-sectional study of the accuracy of NLP from dictated consult notes from our tuberculosis clinic with manual chart abstraction as the reference standard. Consult notes for 130 patients were extracted and processed using NLP. We extracted 15 clinical features from these consult notes and grouped them a priori into categories of simple, moderate, and complex for analysis. RESULTS: For the primary outcome of overall accuracy, NLP performed best for features classified as simple, achieving an overall accuracy of 96% (95% CI 94.3-97.6). Performance was slightly lower for features of moderate clinical and linguistic complexity at 93% (95% CI 91.1-94.4), and lowest for complex features at 91% (95% CI 87.3-93.1). CONCLUSIONS: The findings of this study support the use of NLP for extracting clinical features from dictated consult notes in the setting of a tuberculosis clinic. Further research is needed to fully establish the validity of NLP for this and other purposes.

16.
Thorax ; 74(11): 1091-1098, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31431489

RESUMO

Intensive care unit acquired weakness (ICUAW) is now a well-known entity complicating critical illness. It increases mortality and in the critical illness survivor it is associated with physical disability, substantially increased health resource utilisation and healthcare costs. Skeletal muscle wasting is a key driver of ICUAW and physical functional outcomes in both the short and long term. To date, there is no intervention that can universally and consistently prevent muscle loss during critical illness, or enhance its recovery following intensive care unit discharge, to improve physical function. Clinical trials of early mobilisation or exercise training, or enhanced nutritional support have generated inconsistent results and we have no effective pharmacological interventions. This review will delineate our current understanding of the mechanisms underpinning the development and persistence of skeletal muscle loss and dysfunction in the critically ill individual, highlighting recent discoveries and clinical observations, and utilisation of this knowledge in the development of novel therapeutics.


Assuntos
Cuidados Críticos , Debilidade Muscular/etiologia , Debilidade Muscular/fisiopatologia , Músculo Esquelético/fisiopatologia , Atrofia Muscular/etiologia , Atrofia Muscular/fisiopatologia , Animais , Estado Terminal , Fibrose , Humanos , Unidades de Terapia Intensiva , Proteínas Musculares/biossíntese , Músculo Esquelético/patologia , Desempenho Físico Funcional , Proteólise , Regeneração , Pesquisa Translacional Biomédica
18.
Crit Care Clin ; 34(4): 549-556, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30223993

RESUMO

Disability after critical illness is heterogeneous and related to multiple morbidities. Muscle and nerve injury represent prevalent and important determinants of long-term disability. As the population ages and accrues a greater burden of comorbid illness and medical complexity, those patients admitted to an intensive care unit will be challenged in their recovery because of diminished organ reserve and variable tissue resiliency. This represents a significant burgeoning public health concern. This article presents a brief overview of the pathophysiology and the emerging basic science of neuromuscular dysfunction in critical illness.


Assuntos
Estado Terminal , Doenças Neuromusculares/fisiopatologia , Autofagia , Humanos , Proteólise , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...